

IFB-GHURA-24-005

Upgrade, Renovation and Correction of Above Ground Storm Drains at Toto Gardens Response to Inquiries No. 3

This Addendum and Response to Request for Information (RFI) is issued to modify the previously issued bid documents and/or given for informational purposes and to the extent the responses below modify the bid documents, please treat them as an amendment to the Bid. The following responses are in response to RFIs received from potential bidders on March 22, and 25, 2024.

REF:	QUESTION/ INQUIRY AS	GHURA RESPONSE:
SUBMITTED: Questions from March 22 and 25, 2024		
Questions from Waren 22 and 23, 2024		
1.	We have questions concerning the drainage pipes to be use: Do you need a specific color? Is black pipe acceptable?	• Addendum to the IFB please refer to the attached additional Master Specifications, Under Section 334100 Storm Utility Drainage Piping.
2.	Do you require corrugated pipe or is the regular smooth-surface pipe acceptable?	 From 15 to 20 inches in diameter, we will use PVC Pipe for drainage piping, from 24 inches and larger should use HDPE pipe. Refer to specification 334100 Storm Utility Drainage unless indicated on the scope of work. Note: All material shall be manufactured in the U.S. PVC
		and HDPE Pipe shall be TRAFFIC rated.
3.	We hope this email finds you well. We regret to inform you that due to unforeseen circumstances, we were unable to attend the pre-bid conference and site visit held Thursday, March 14, 2024. However, we are very interested in participating in the bidding process and	• Due to the urgency and timeliness of referenced IFB GHURA-24- 005, two site visits were conducted on following dates, March 14, 2024 at 10:00 and March 21, 2024 at 9:00 am. All

Bidders are also notified to visit GHURA website: <u>www.ghura.org</u> to ensure that addenda to the bid, answers to questions, and reminders are communicated to all bidders throughout the solicitation process.

CONCURRED:

3/25/2024

Date:

Sonny Perez

Architect and Engineering Manager

Fernando B. Esteves Deputy Director GHURA does not discriminate against persons with disabilities.

The Chief Planner has been designated as Section 504 Coordinator. The Coordinator can be contacted at the above address and telephone numbers.

Guahan Housing and Urban Renewal Authority Aturidat Ginima' Yan Rinueban Siudat Guahan 117 Bien Venida Avenue, Sinajana, GU 96910 Phone: (671)477-9851 Fax: (671) 300-7565 TTY: (671) 472-3701

SPECIFICATIONS

FOR

IFB GHURA-24-005

SECTION 033000 - CAST-IN-PLACE CONCRETE FOR CIVIL WORKS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes cast-in-place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes.
- B. Related Sections:
 - 1. Section 312000 "Earth Moving" for drainage fill under slabs-on-grade.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Design Mixtures: For each concrete mixture.
- C. Steel Reinforcement Shop Drawings: Placing drawings that detail fabrication, bending, and placement.
- D. Formwork Shop Drawings: Prepared by or under the supervision of a qualified professional engineer detailing fabrication, assembly, and support of formwork.

1.3 INFORMATIONAL SUBMITTALS

- A. Material certificates.
- B. Material test reports.

1.4 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94 requirements for production facilities and equipment.
 - 1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities."
- B. Testing Agency Qualifications: An independent agency qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.
- C. Welding Qualifications: Qualify procedures and personnel according to AWS D1.4, "Structural Welding Code Reinforcing Steel."

- D. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:
 - 1. ACI 301, "Specifications for Structural Concrete," Sections 1 through 5.
 - 2. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."
- E. Concrete Testing Service: Engage a qualified independent testing agency to perform material evaluation tests and to design concrete mixtures.

PART 2 - PRODUCTS

2.1 FORM-FACING MATERIALS

- A. Smooth-Formed Finished Concrete: Form-facing panels that will provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.
- B. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.

2.2 STEEL REINFORCEMENT

- A. Reinforcing Bars: ASTM A 615, Grade 60, deformed.
- B. Plain-Steel Welded Wire Reinforcement: ASTM A 185, plain, fabricated from as-drawn steel wire into flat sheets.
- C. Deformed-Steel Welded Wire Reinforcement: ASTM A 497, flat sheet.
- D. Galvanized-Steel Welded Wire Reinforcement: ASTM A 185, plain, fabricated from galvanized-steel wire into flat sheets.
- E. Epoxy-Coated Welded Wire Reinforcement: ASTM A 884, Class A coated, Type 1, plain steel.
- F. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI's "Manual of Standard Practice.

2.3 CONCRETE MATERIALS

- A. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source, throughout Project:
 - 1. Portland Cement: ASTM C 150, Type I.
 - a. Fly Ash: ASTM C 618, Class F.
- B. Normal-Weight Aggregates: ASTM C 33, graded.

- 1. Maximum Coarse-Aggregate Size: 3/4 inch nominal.
- 2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.
- C. Water: ASTM C 94 and potable.

2.4 ADMIXTURES

- A. Air-Entraining Admixture: ASTM C 260.
- B. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and that will not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.
 - 1. Water-Reducing Admixture: ASTM C 494, Type A.
 - 2. Retarding Admixture: ASTM C 494, Type B.
 - 3. Water-Reducing and Retarding Admixture: ASTM C 494, Type D.
 - 4. High-Range, Water-Reducing Admixture: ASTM C 494, Type F.
 - 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494, Type G.
 - 6. Plasticizing and Retarding Admixture: ASTM C 1017, Type II.

2.5 VAPOR RETARDERS

- A. Sheet Vapor Retarder: ASTM E 1745, Class A. Include manufacturer's recommended adhesive or pressure-sensitive tape.
- B. Sheet Vapor Retarder: Polyethylene sheet, ASTM D 4397, not less than 10 mils thick.

2.6 CURING MATERIALS

- A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete.
- B. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. when dry.
- C. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.
- D. Water: Potable.
- E. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, dissipating.

2.7 CONCRETE MIXTURES

A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301.

- B. Cementitious Materials: Use fly ash, pozzolan, ground granulated blast-furnace slag, and silica fume as needed to reduce the total amount of portland cement, which would otherwise be used, by not less than 40 percent.
- C. Admixtures: Use admixtures according to manufacturer's written instructions.
 - 1. Use admixture in concrete, as required, for placement and workability.
 - 2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
 - 3. Use water-reducing admixture in pumped concrete, concrete for heavy-use industrial slabs and parking structure slabs, concrete required to be watertight, and concrete with a water-cementitious materials ratio below 0.50.
- D. Proportion normal-weight concrete mixture as follows:
 - 1. Minimum Compressive Strength: 6000 psi and 4000 psi at 28 days. See civil drawings.
 - 2. Maximum Water-Cementitious Materials Ratio: 0.40.
 - 3. Slump Limit: 4 inches

2.8 FABRICATING REINFORCEMENT

A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

2.9 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94 and ASTM C 1116, and furnish batch ticket information.
 - 1. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

PART 3 - EXECUTION

3.1 FORMWORK

- A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.
- B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117.
- C. Chamfer as required exterior corners and edges of permanently exposed concrete.

3.2 EMBEDDED ITEMS

A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

3.3 VAPOR RETARDERS

- A. Sheet Vapor Retarders: Place, protect, and repair sheet vapor retarder according to ASTM E 1643 and manufacturer's written instructions.
 - 1. Lap joints 6 inches and seal with manufacturer's recommended tape.

3.4 STEEL REINFORCEMENT

- A. General: Comply with CRSI's "Manual of Standard Practice" for placing reinforcement.
 - 1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.

3.5 JOINTS

- A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.
- B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.
- C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness as follows:
 - 1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint to a radius of 1/8 inch. Repeat grooving of contraction joints after applying surface finishes. Eliminate groover tool marks on concrete surfaces.
 - 2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks.
- D. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.

3.6 CONCRETE PLACEMENT

A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.

- B. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete will be placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation.
 - 1. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301.
- C. Hot-Weather Placement: Comply with ACI 301.

3.7 FINISHING FORMED SURFACES

- A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defects repaired and patched. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces not exposed to public view.
- B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defects. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces exposed to public view.
- C. Rubbed Finish: Apply the following to smooth-formed finished as-cast concrete where indicated:
 - 1. Smooth-Rubbed Finish: Not later than one day after form removal, moisten concrete surfaces and rub with carborundum brick or another abrasive until producing a uniform color and texture. Do not apply cement grout other than that created by the rubbing process.
 - 2. Grout-Cleaned Finish: Wet concrete surfaces and apply grout of a consistency of thick paint to coat surfaces and fill small holes. Mix one part portland cement to one and one-half parts fine sand with a 1:1 mixture of bonding admixture and water. Add white portland cement in amounts determined by trial patches so color of dry grout will match adjacent surfaces. Scrub grout into voids and remove excess grout. When grout whitens, rub surface with clean burlap and keep surface damp by fog spray for at least 36 hours.
 - 3. Cork-Floated Finish: Wet concrete surfaces and apply a stiff grout. Mix one part portland cement and one part fine sand with a 1:1 mixture of bonding agent and water. Add white portland cement in amounts determined by trial patches so color of dry grout will match adjacent surfaces. Compress grout into voids by grinding surface. In a swirling motion, finish surface with a cork float.
- D. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces unless otherwise indicated.

3.8 FINISHING SLABS

- A. General: Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.
- B. Scratch Finish: While still plastic, texture concrete surface that has been screeded and bull-floated or darbied. Use stiff brushes, brooms, or rakes to produce a profile amplitude of 1/4 inch in one direction.
 - 1. Apply scratch finish to surfaces as indicated.
- C. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power driven floats. Restraighten, cut down high spots, and fill low spots. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture.
 - 1. Apply float finish to surfaces as indicated.
- D. Trowel Finish: After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.
 - 1. Apply a trowel finish to surfaces as indicated.
 - 2. Finish and measure surface so gap at any point between concrete surface and an unleveled, freestanding, 10-ft.- long straightedge resting on two high spots and placed anywhere on the surface does not exceed 1/4 inch.
- E. Trowel and Fine-Broom Finish: Apply a first trowel finish to surfaces as indicated.While concrete is still plastic, slightly scarify surface with a fine broom.
 - 1. Comply with flatness and levelness tolerances for trowel-finished floor surfaces.
- F. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, ramps, and elsewhere as indicated.

3.9 CONCRETE PROTECTING AND CURING

- A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 301 for hot-weather protection during curing.
- B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.
- C. Cure concrete according to ACI 308.1, by one or a combination of the following methods:
 - 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days.

- 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period using cover material and waterproof tape.
- 3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.
 - a. Removal: After curing period has elapsed, remove curing compound without damaging concrete surfaces by method recommended by curing compound manufacturer unless manufacturer certifies curing compound will not interfere with bonding of floor covering used on Project.
- 4. Curing and Sealing Compound: Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period.

3.10 CONCRETE SURFACE REPAIRS

A. Defective Concrete: Repair and patch defective areas when approved by Architect. Remove and replace concrete that cannot be repaired and patched to Architect's approval.

3.11 FIELD QUALITY CONTROL

A. Testing and Inspecting: Owner will engage a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.

END OF SECTION 033000

SECTION 311000 - SITE CLEARING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Protecting existing vegetation to remain.
 - 2. Removing existing vegetation.
 - 3. Clearing and grubbing.
 - 4. Stripping and stockpiling topsoil.
 - 5. Removing above- and below-grade site improvements.
 - 6. Disconnecting, capping or sealing site utilities.
 - 7. Temporary erosion- and sedimentation-control measures.

1.2 MATERIAL OWNERSHIP

A. Except for stripped topsoil and other materials indicated to be stockpiled or otherwise remain Owner's property, cleared materials shall become Contractor's property and shall be removed from Project site.

1.3 **PROJECT CONDITIONS**

- A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during site-clearing operations.
 - 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
 - 2. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.
- B. Salvable Improvements: Carefully remove items indicated to be salvaged and store on Owner's premises.
- C. Utility Locator Service: Notify utility locator service for area where Project is located before site clearing.
- D. Do not commence site clearing operations until temporary erosion- and sedimentationcontrol and plant-protection measures are in place.
- E. The following practices are prohibited within protection zones:
 - 1. Storage of construction materials, debris, or excavated material.
 - 2. Parking vehicles or equipment.
 - 3. Foot traffic.
 - 4. Erection of sheds or structures.

- 5. Impoundment of water.
- 6. Excavation or other digging unless otherwise indicated.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Satisfactory Soil Material: Requirements for satisfactory soil material are specified in Section 312000 "Earth Moving."
 - 1. Obtain approved borrow soil material off-site when satisfactory soil material is not available on-site.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect and maintain benchmarks and survey control points from disturbance during construction.
- B. Locate and clearly identify trees, shrubs, and other vegetation to remain or to be relocated.
- C. Protect existing site improvements to remain from damage during construction.
 - 1. Restore damaged improvements to their original condition, as acceptable to Owner.

3.2 TEMPORARY EROSION AND SEDIMENTATION CONTROL

- A. Provide temporary erosion- and sedimentation-control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways, according to erosion- and sedimentation-control Drawings and requirements of authorities having jurisdiction.
- B. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross protection zones.
- C. Inspect, maintain, and repair erosion- and sedimentation-control measures during construction until permanent vegetation has been established.
- D. Remove erosion and sedimentation controls and restore and stabilize areas disturbed during removal.

3.3 EXISTING UTILITIES

A. Locate, identify, disconnect, and seal or cap utilities indicated to be removed or abandoned in place.

- 1. Arrange with utility companies to shut off indicated utilities.
- B. Interrupting Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
 - 1. Notify Architect not less than two days in advance of proposed utility interruptions.
 - 2. Do not proceed with utility interruptions without Architect's written permission.

3.4 CLEARING AND GRUBBING

- A. Remove obstructions, trees, shrubs, and other vegetation to permit installation of new construction.
 - 1. Grind down stumps and remove roots, obstructions, and debris to a depth of 18 inches below exposed subgrade.
 - 2. Use only hand methods for grubbing within protection zones.
- B. Fill depressions caused by clearing and grubbing operations with satisfactory soil material unless further excavation or earthwork is indicated.
 - 1. Place fill material in horizontal layers not exceeding a loose depth of 8 inches, and compact each layer to a density equal to adjacent original ground.

3.5 TOPSOIL STRIPPING

- A. Remove sod and grass before stripping topsoil.
- B. Strip topsoil depth of 6 inches or more in a manner to prevent intermingling with underlying subsoil or other waste materials.
- C. Stockpile topsoil away from edge of excavations without intermixing with subsoil. Grade and shape stockpiles to drain surface water. Cover to prevent windblown dust and erosion by water.

3.6 SITE IMPROVEMENTS

A. Remove existing above- and below-grade improvements as indicated and necessary to facilitate new construction.

3.7 DISPOSAL OF SURPLUS AND WASTE MATERIALS

- A. Remove surplus soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Owner's property.
- B. Separate recyclable materials produced during site clearing from other nonrecyclable materials. Store or stockpile without intermixing with other materials and transport them to recycling facilities. Do not interfere with other Project work.

END OF SECTION 311000

SITE CLEARING

SECTION 312000 - EARTH MOVING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Preparing subgrades for walks, pavementsturf and grasses.
 - 2. Drainage course for concrete walks.
 - 3. Subbase course for concrete walks and pavements.
 - 4. Subbase course and base course for asphalt paving.
 - 5. Excavating and backfilling for utility trenches.

1.2 DEFINITIONS

- A. Backfill: Soil material used to fill an excavation.
 - 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 - 2. Final Backfill: Backfill placed over initial backfill to fill a trench.
- B. Base Course: Aggregate layer placed between the subbase course and hot-mix asphalt paving.
- C. Bedding Course: Aggregate layer placed over the excavated subgrade in a trench before laying pipe.
- D. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.
- E. Drainage Course: Aggregate layer supporting the slab-on-grade that also minimizes upward capillary flow of pore water.
- F. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.
 - 1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Architect. Authorized additional excavation and replacement material will be paid for according to Contract provisions for changes in the Work.
 - 2. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Architect. Unauthorized excavation, as well as remedial work directed by Architect, shall be without additional compensation.
- G. Fill: Soil materials used to raise existing grades.
- H. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.

- I. Subbase Course: Aggregate layer placed between the subgrade and base course for hot-mix asphalt pavement, or aggregate layer placed between the subgrade and a cement concrete pavement or a cement concrete or hot-mix asphalt walk.
- J. Subgrade: Uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, drainage course, or topsoil materials.
- K. Utilities: On-site underground pipes, conduits, ducts, and cables, as well as underground services within buildings.

1.3 PROJECT CONDITIONS

A. Utility Locator Service: Notify utility locator service for area where Project is located before beginning earth moving operations.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

- A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.
- B. Satisfactory and Unsatisfactory Soils: Provide type of soils as per recommendation from a soil engineer. Remove from the site soils not recommended for filling and backfilling.
- C. Subbase Material: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.
- D. Base Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 95 percent passing a 1-1/2-inch sieve and not more than 8 percent passing a No. 200 sieve.
- E. Engineered Fill: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.
- F. Bedding Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; except with 100 percent passing a 1-inch sieve and not more than 8 percent passing a No. 200 sieve.
- G. Drainage Course: Unless otherwise shown on the drawings, narrowly graded mixture of washed crushed stone, or crushed or uncrushed gravel; ASTM D 448; coarse-aggregate grading Size 57; with 100 percent passing a 1-1/2-inch sieve and 0 to 5 percent passing a No. 8 sieve.

2.2 ACCESSORIES

- A. Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility; colored to comply with local practice or requirements of authorities having jurisdiction.
- B. Detectable Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored to comply with local practice or requirements of authorities having jurisdiction.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth moving operations.
- B. Protect and maintain erosion and sedimentation controls during earth moving operations.

3.2 EXCAVATION, GENERAL

- A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of obstructions.
 - 1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.

3.3 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

3.4 EXCAVATION FOR UTILITY TRENCHES

- A. Excavate trenches to indicated gradients, lines, depths, and elevations.
- B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches higher than top of pipe or conduit unless otherwise indicated.

- 1. Clearance: As indicated.
- C. Trench Bottoms: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.
 - 1. Excavate trenches 6 inches deeper than elevation required in rock or other unyielding bearing material.
- D. Trenches in Tree- and Plant-Protection Zones:
 - 1. Hand-excavate to indicated lines, cross sections, elevations, and subgrades. Use narrowtine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.
 - 2. Do not cut main lateral roots or taproots; cut only smaller roots that interfere with installation of utilities.
 - 3. Cut and protect roots according to requirements in Section 015639 "Temporary Tree and Plant Protection."

3.5 SUBGRADE INSPECTION

- A. Proof-roll subgrade below the pavements with a pneumatic-tired dump truck to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.
- B. Reconstruct subgrades damaged by rain, accumulated water, or construction activities, as directed by Architect, without additional compensation.

3.6 UNAUTHORIZED EXCAVATION

1. Fill Fill unauthorized excavations under other construction, pipe, or conduit as directed by Architect.

3.7 STORAGE OF SOIL MATERIALS

- A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.
 - 1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.8 UTILITY TRENCH BACKFILL

- A. Place backfill on subgrades free of mud.
- B. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.

- C. Trenches under Roadways: Provide concrete encasement for water and sewer piping or conduit less than 30 inches below surface of roadways and 12 inches for storm drainage pipe. After installing and testing, completely encase piping or conduit in a minimum of 6 inche of concrete before backfilling or placing roadway subbase course. Concrete is specified in "Cast-in-Place Concrete".
- D. Unless otherwise specified by the soil engineer, place and compact initial backfill of subbase material, free of particles larger than 1 inch in any dimension, to a height of 12 inches over the pipe or conduit.
 - 1. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.
- E. Place and compact final backfill of satisfactory soil to final subgrade elevation.
- F. Install warning tape directly above utilities, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.9 SOIL MOISTURE CONTROL

- A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2 percent of optimum moisture content.
 - 1. Do not place backfill or fill soil material on surfaces that are muddy.
 - 2. Remove and replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.

3.10 COMPACTION OF SOIL BACKFILLS AND FILLS

- A. Place backfill and fill soil materials in layers not more than 8 inches in loose depth for material compacted by heavy compaction equipment, and not more than 4 inches in loose depth for material compacted by hand-operated tampers.
- B. Place backfill and fill soil materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure.
- C. Compact soil materials to not less than the following percentages of maximum dry unit weight according to ASTM D 1557:
 - 1. Under pavements, scarify and recompact top 12 inches of existing subgrade and each layer of backfill or fill soil material at 95 percent.
 - 2. Under walkways, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 95 percent.
 - 3. Under turf or unpaved areas, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 85 percent.
 - 4. For utility trenches, compact each layer of initial and final backfill soil material at 95 percent.

3.11 GRADING

- A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.
- B. Site Rough Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to required elevations within the following tolerances:
 - 1. Turf or Unpaved Areas: Plus or minus 1 inch.
 - 2. Walks: Plus or minus 1 inch.
 - 3. Pavements: Plus or minus 1/2 inch.

3.12 SUBBASE AND BASE COURSES UNDER PAVEMENTS AND WALKS

- A. Place subbase course and base course on subgrades free of mud.
- B. On prepared subgrade, place subbase course and base course under pavements and walks as follows:
 - 1. Shape subbase course and base course to required crown elevations and cross-slope grades.
 - 2. Place subbase course and base course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.
 - 3. Compact subbase course and base course at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 95 percent of maximum dry unit weight according to ASTM D 1557.

3.13 FIELD QUALITY CONTROL

- A. Earthwork for shall be monitored by a soil engineer.
- B. Testing Agency: Owner will engage a qualified geotechnical engineering testing agency to perform tests and inspections.
- C. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earth moving only after test results for previously completed work comply with requirements.
- D. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil materials to depth required; recompact and retest until specified compaction is obtained.

3.14 PROTECTION

A. Protecting Graded Areas: Protect newly graded areas from traffic and erosion. Keep free of trash and debris.

- B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.
- C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.
 - 1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.15 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Remove surplus satisfactory soil and waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.

END OF SECTION 312000

SECTION 312319 - DEWATERING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes construction dewatering.
- B. Related Requirements:
 - 1. Section 013233 "Photographic Documentation" for recording preexisting conditions and dewatering system progress.
 - 2. Section 312000 "Earth Moving" for excavating, backfilling, site grading, and controlling surface-water runoff and ponding.
 - 3. Section 334600 "Subdrainage" for permanent foundation wall, underfloor, and footing drainage.

1.3 ACTION SUBMITTALS

- A. Shop Drawings: For dewatering system, prepared by or under the supervision of a qualified professional engineer.
 - 1. Include plans, elevations, sections, and details.
 - 2. Show arrangement, locations, and details of wells and well points; locations of risers, headers, filters, pumps, power units, and discharge lines; and means of discharge, control of sediment, and disposal of water.
 - 3. Include layouts of piezometers and flow-measuring devices for monitoring performance of dewatering system.
 - 4. Include written plan for dewatering operations including sequence of well and well-point placement coordinated with excavation shoring and bracings and control procedures to be adopted if dewatering problems arise.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer and professional engineer.
- B. Field quality-control reports.
- C. Existing Conditions: Using photographs, show existing conditions of adjacent construction and site improvements that might be misconstrued as damage caused by dewatering operations. Submit before Work begins.

D. Record Drawings: Identify locations and depths of capped wells and well points and other abandoned-in-place dewatering equipment.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer that has specialized in design of dewatering systems and dewatering work.

1.6 FIELD CONDITIONS

- A. Project-Site Information: A geotechnical report has been prepared for this Project and is available for information only. The opinions expressed in this report are those of a geotechnical engineer and represent interpretations of subsoil conditions, tests, and results of analyses conducted by a geotechnical engineer. Owner is not responsible for interpretations or conclusions drawn from this data.
 - 1. Make additional test borings and conduct other exploratory operations necessary for dewatering according to the performance requirements.
 - 2. The geotechnical report is included elsewhere in Project Manual.
- B. Survey Work: Engage a qualified land surveyor or professional engineer to survey adjacent existing buildings, structures, and site improvements; establish exact elevations at fixed points to act as benchmarks. Clearly identify benchmarks and record existing elevations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Dewatering Performance: Design, furnish, install, test, operate, monitor, and maintain dewatering system of sufficient scope, size, and capacity to control hydrostatic pressures and to lower, control, remove, and dispose of ground water and permit excavation and construction to proceed on dry, stable subgrades.
 - 1. Design dewatering system, including comprehensive engineering analysis by a qualified professional engineer.
 - 2. Continuously monitor and maintain dewatering operations to ensure erosion control, stability of excavations and constructed slopes, prevention of flooding in excavation, and prevention of damage to subgrades and permanent structures.
 - 3. Prevent surface water from entering excavations by grading, dikes, or other means.
 - 4. Accomplish dewatering without damaging existing buildings, structures, and site improvements adjacent to excavation.
 - 5. Remove dewatering system when no longer required for construction.
- B. Regulatory Requirements: Comply with governing EPA notification regulations before beginning dewatering. Comply with water- and debris-disposal regulations of authorities having jurisdiction.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by dewatering operations.
 - 1. Prevent surface water and subsurface or ground water from entering excavations, from ponding on prepared subgrades, and from flooding site or surrounding area.
 - 2. Protect subgrades and foundation soils from softening and damage by rain or water accumulation.
- B. Install dewatering system to ensure minimum interference with roads, streets, walks, and other adjacent occupied and used facilities.
 - 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. Provide alternate routes around closed or obstructed traffic ways if required by authorities having jurisdiction.
- C. Provide temporary grading to facilitate dewatering and control of surface water.
- D. Protect and maintain temporary erosion and sedimentation controls, which are specified in Section 311000 "Site Clearing," During dewatering operations.

3.2 INSTALLATION

- A. Install dewatering system utilizing wells, well points, or similar methods complete with pump equipment, standby power and pumps, filter material gradation, valves, appurtenances, water disposal, and surface-water controls.
 - 1. Space well points or wells at intervals required to provide sufficient dewatering.
 - 2. Use filters or other means to prevent pumping of fine sands or silts from the subsurface.
- B. Place dewatering system into operation to lower water to specified levels before excavating below ground-water level.
- C. Provide sumps, sedimentation tanks, and other flow-control devices as required by authorities having jurisdiction.
- D. Provide standby equipment on-site, installed and available for immediate operation, to maintain dewatering on continuous basis if any part of system becomes inadequate or fails.

3.3 OPERATION

A. Operate system continuously until drains, sewers, and structures have been constructed and fill materials have been placed or until dewatering is no longer required.

- B. Operate system to lower and control ground water to permit excavation, construction of structures, and placement of fill materials on dry subgrades. Drain water-bearing strata above and below bottom of foundations, drains, sewers, and other excavations.
 - 1. Do not permit open-sump pumping that leads to loss of fines, soil piping, subgrade softening, and slope instability.
 - 2. Reduce hydrostatic head in water-bearing strata below subgrade elevations of foundations, drains, sewers, and other excavations.
- C. Dispose of water removed by dewatering in a manner that avoids endangering public health, property, and portions of work under construction or completed. Dispose of water and sediment in a manner that avoids inconvenience to others.
- D. Remove dewatering system from Project site on completion of dewatering. Plug or fill well holes with sand or cut off and cap wells a minimum of 36 inches (900 mm) below overlying construction.

3.4 FIELD QUALITY CONTROL

- A. Observation Wells: Provide observation wells or piezometers, take measurements, and maintain at least the minimum number indicated; additional observation wells may be required by authorities having jurisdiction.
 - 1. Observe and record daily elevation of ground water and piezometric water levels in observation wells.
 - 2. Repair or replace, within 24 hours, observation wells that become inactive, damaged, or destroyed. In areas where observation wells are not functioning properly, suspend construction activities until reliable observations can be made. Add or remove water from observation-well risers to demonstrate that observation wells are functioning properly.
 - 3. Fill observation wells, remove piezometers, and fill holes when dewatering is completed.
- B. Survey-Work Benchmarks: Resurvey benchmarks regularly during dewatering and maintain an accurate log of surveyed elevations for comparison with original elevations. Promptly notify Architect if changes in elevations occur or if cracks, sags, or other damage is evident in adjacent construction.
- C. Provide continual observation to ensure that subsurface soils are not being removed by the dewatering operation.
- D. Prepare reports of observations.

3.5 **PROTECTION**

- A. Protect and maintain dewatering system during dewatering operations.
- B. Promptly repair damages to adjacent facilities caused by dewatering.

END OF SECTION 312319

SECTION 315000 - EXCAVATION SUPPORT AND PROTECTION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes temporary excavation support and protection systems.
- B. Related Requirements:
 - 1. Section 312000 "Earth Moving" for excavating and backfilling and for controlling surface-water runoff and ponding.
 - 2. Section 312319 "Dewatering" for dewatering excavations.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, performance properties, and dimensions of individual components and profiles, and calculations for excavation support and protection system.
- B. Shop Drawings: For excavation support and protection system, prepared by or under the supervision of a qualified professional engineer.
 - 1. Include plans, elevations, sections, and details.
 - 2. Show arrangement, locations, and details of soldier piles, piling, lagging, tiebacks, bracing, and other components of excavation support and protection system according to engineering design.
 - 3. Indicate type and location of waterproofing.
 - 4. Include a written plan for excavation support and protection, including sequence of construction of support and protection coordinated with progress of excavation.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For professional engineer.
- B. Contractor Calculations: For excavation support and protection system. Include analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

- C. Existing Conditions: Using photographs, show existing conditions of adjacent construction and site improvements that might be misconstrued as damage caused by inadequate performance of excavation support and protection systems. Submit before Work begins.
- D. Record Drawings: Identify locations and depths of capped utilities, abandoned-in-place support and protection systems, and other subsurface structural, electrical, or mechanical conditions.

1.5 FIELD CONDITIONS

- A. Interruption of Existing Utilities: Do not interrupt any utility serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility according to requirements indicated:
 - 1. Notify Owner no fewer than two (2) days in advance of proposed interruption of utility.
 - 2. Do not proceed with interruption of utility without Owner's written permission.
- B. Project-Site Information: A geotechnical report has been prepared for this Project and is available for information only. The opinions expressed in this report are those of a geotechnical engineer and represent interpretations of subsoil conditions, tests, and results of analyses conducted by a geotechnical engineer. Owner is not responsible for interpretations or conclusions drawn from the data.
 - 1. Make additional test borings and conduct other exploratory operations necessary for excavation support and protection according to the performance requirements.
 - 2. The geotechnical report is included elsewhere in Project Manual.
- C. Survey Work: Engage a qualified land surveyor or professional engineer to survey adjacent existing buildings, structures, and site improvements; establish exact elevations at fixed points to act as benchmarks. Clearly identify benchmarks and record existing elevations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Provide design, monitor, and maintain excavation support and protection system capable of supporting excavation sidewalls and of resisting earth and hydrostatic pressures and superimposed and construction loads.
 - 1. Contractor Design: Design excavation support and protection system, including comprehensive engineering analysis by a qualified professional engineer.
 - 2. Prevent surface water from entering excavations by grading, dikes, or other means.
 - 3. Install excavation support and protection systems without damaging existing buildings, structures, and site improvements adjacent to excavation.
 - 4. Continuously monitor vibrations, settlements, and movements to ensure stability of excavations and constructed slopes and to ensure that damage to permanent structures is prevented.

2.2 MATERIALS

- A. General: Provide materials that are either new or in serviceable condition.
- B. Structural Steel: ASTM A 36/A.
- C. Steel Sheet Piling: ASTM A 328/A ; with continuous interlocks.
 - 1. Corners: Site-fabricated mechanical interlock.
- D. Wood Lagging: Lumber, mixed hardwood, nominal rough thickness of size and strength required for application 3 inches .
- E. Shotcrete: Comply with Section 033713 "Shotcrete" for shotcrete materials and mixes, reinforcement, and shotcrete application.
- F. Cast-in-Place Concrete: ACI 301, of compressive strength required for application.
- G. Reinforcing Bars: ASTM A 615/A, Grade 60, deformed.
- H. Tiebacks: Steel bars, ASTM A 722/A.
- I. Tiebacks: Steel strand, ASTM A 416.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards that could develop during excavation support and protection system operations.
 - 1. Shore, support, and protect utilities encountered.
- B. Install excavation support and protection systems to ensure minimum interference with roads, streets, walks, and other adjacent occupied and used facilities.
 - 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. Provide alternate routes around closed or obstructed traffic ways if required by authorities having jurisdiction.
- C. Locate excavation support and protection systems clear of permanent construction so that construction and finishing of other work is not impeded.

3.2 SOLDIER PILES AND LAGGING

A. Install steel soldier piles before starting excavation. Extend soldier piles below excavation grade level to depths adequate to prevent lateral movement. Space soldier piles at regular

intervals not to exceed allowable flexural strength of wood lagging. Accurately align exposed faces of flanges to vary not more than 2 inches (50 mm) from a horizontal line and not more than 1:120 out of vertical alignment.

- B. Install wood lagging within flanges of soldier piles as excavation proceeds. Trim excavation as required to install lagging. Fill voids behind lagging with soil, and compact.
- C. Install wales horizontally at locations indicated on Drawings and secure to soldier piles.

3.3 SHEET PILING

- A. Before starting excavation, install one-piece sheet piling lengths and tightly interlock vertical edges to form a continuous barrier.
- B. Accurately place the piling, using templates and guide frames unless otherwise recommended in writing by the sheet piling manufacturer. Limit vertical offset of adjacent sheet piling to 60 inches (1500 mm). Accurately align exposed faces of sheet piling to vary not more than 2 inches (50 mm) from a horizontal line and not more than 1:120 out of vertical alignment.
- C. Cut tops of sheet piling to uniform elevation at top of excavation.

3.4 TIEBACKS

- A. Drill, install, grout, and tension tiebacks.
- B. Test load-carrying capacity of each tieback and replace and retest deficient tiebacks.
 - 1. Have test loading observed by a qualified professional engineer responsible for design of excavation support and protection system.
- C. Maintain tiebacks in place until permanent construction is able to withstand lateral earth and hydrostatic pressures.

3.5 BRACING

- A. Bracing: Locate bracing to clear columns, floor framing construction, and other permanent work. If necessary to move brace, install new bracing before removing original brace.
 - 1. Do not place bracing where it will be cast into or included in permanent concrete work unless otherwise approved by Architect.
 - 2. Install internal bracing if required to prevent spreading or distortion of braced frames.
 - 3. Maintain bracing until structural elements are supported by other bracing or until permanent construction is able to withstand lateral earth and hydrostatic pressures.

3.6 FIELD QUALITY CONTROL

A. Survey-Work Benchmarks: Resurvey benchmarks regularly during installation of excavation support and protection systems, excavation progress, and for as long as excavation remains

open. Maintain an accurate log of surveyed elevations and positions for comparison with original elevations and positions. Promptly notify Architect if changes in elevations or positions occur or if cracks, sags, or other damage is evident in adjacent construction.

- B. Promptly correct detected bulges, breakage, or other evidence of movement to ensure that excavation support and protection system remains stable.
- C. Promptly repair damages to adjacent facilities caused by installation or faulty performance of excavation support and protection systems.

3.7 REMOVAL AND REPAIRS

- A. Remove excavation support and protection systems when construction has progressed sufficiently to support excavation and earth and hydrostatic pressures. Remove in stages to avoid disturbing underlying soils and rock or damaging structures, pavements, facilities, and utilities.
 - 1. Remove excavation support and protection systems to a minimum depth of 48 inches (1200 mm) below overlying construction and abandon remainder.
 - 2. Fill voids immediately with approved backfill compacted to density specified in Section 312000 "Earth Moving."
 - 3. Repair or replace, as approved by Architect, adjacent work damaged or displaced by removing excavation support and protection systems.
- B. Leave excavation support and protection systems permanently in place.

END OF SECTION 315000

SECTION 323113 - CHAIN LINK FENCES AND GATES

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes chain-link fences and swing gates.

1.2 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design chain-link fences and gates, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Structural Performance: Chain-link fence and gate framework shall withstand the effects of gravity loads and wind load with V=195mph under conditions indicated according to ASCE/SEI 7:
 - 1. Minimum Post Size: Determine according to ASTM F 1043 for framework up to 6 feet high, and post spacing not to exceed 10 feet.
 - 2. Minimum Post Size and Maximum Spacing: Determine according to CLFMI WLG 2445, based on mesh size and pattern specified and on the following:
 - a. Wind Loads: V-195mph
 - b. Exposure Category: C
 - c. Fence Height: 6 feet
 - d. Material Group: IA, ASTM F 1043 Grade B.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
- C. Samples: For each polymer-coated product and for each color and texture specified, in 6-inch lengths for components and on full-sized units for accessories.
- D. Delegated-Design Submittal: For chain-link fences and gate framework indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

- A. Product Certificates: For each type of chain-link fence and gate, from manufacturer.
- B. Product Test Reports: For framing strength according to ASTM F 1043.

CHAIN LINK FENCES AND GATES

C. Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and maintenance data.

1.6 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which Contractor/Installer agrees to repair or replace components of chain-link fences and gates that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, deterioration of metals, metal finishes, and other materials beyond normal weathering.
 - 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

- 2.1 CHAIN-LINK FENCE FABRIC
 - A. General: Provide fabric in one-piece heights measured between top and bottom of outer edge of selvage knuckle or twist. Comply with CLFMI Product Manual and with requirements indicated below:
 - 1. Fabric Height: As indicated on Drawings.
 - 2. Steel Wire Fabric: Wire with a diameter of 0.192 inch.
 - a. Mesh Size: 1-3/4 inches
 - b. Polymer-Coated Fabric: ASTM F 668, Class 1 over zinc-coated steel wire.
 - 1) Color: As selected by Architect, complying with ASTM F 934.
 - 3. Selvage: Twisted top and knuckled bottom.

2.2 FENCE FRAMING

- A. Posts and Rails: Comply with ASTM F 1043 for framing, including rails, braces, and line; terminal; and corner posts. Provide members with minimum dimensions and wall thickness according to ASTM F 1043 based on the following:
 - 1. Fence Height: As indicated on Drawings
 - 2. Light Industrial Strength: Material Group IC-L, round steel pipe.
 - a. Line Post: 2.375 inches diameter
 - b. End, Corner and Pull Post: 2.375 inches.
 - 3. Horizontal Framework Members: top and bottom rails complying with ASTM F 1043.

- 4. Brace Rails: Comply with ASTM F 1043.
- 5. Zing coating for Steel Framing:

2.3 TENSION WIRE

- A. Metallic-Coated Steel Wire: 0.177-inch- diameter, marcelled tension wire complying with ASTM A 817 and ASTM A 824, with the following metallic coating:
 - 1. Type II, zinc coated with minimum coating weight matching chain-link fabric coating weight.

2.4 SWING GATES

- A. General: Comply with ASTM F 900 for gate posts and double swing gate types.
 - 1. Gate Leaf Width: As indicated
 - 2. Gate Fabric Height: As indicated
- B. Pipe and Tubing:
 - 1. Zinc-Coated Steel: Comply with ASTM F 1043 and ASTM F 1083

C. Hardware:

- 1. Hinges: 180-degree outward swing.
- 2. Latches permitting operation from both sides of gate with provision for padlocking accessible from both sides of gate.
- 3. Closer: Manufacturer's standard

2.5 GROUT AND ANCHORING CEMENT

- A. Nonshrink, Nonmetallic Grout: Premixed, factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107. Provide grout, recommended in writing by manufacturer, for exterior applications.
- B. Erosion-Resistant Anchoring Cement: Factory-packaged, nonshrink, nonstaining, hydrauliccontrolled expansion cement formulation for mixing with potable water at Project site to create pourable anchoring, patching, and grouting compound. Provide formulation that is resistant to erosion from water exposure without needing protection by a sealer or waterproof coating and that is recommended in writing by manufacturer, for exterior applications.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Examine areas and conditions, with Installer present, for compliance with requirements for a verified survey of property lines and legal boundaries, site clearing, earthwork, pavement work, and other conditions affecting performance of the Work.

- 1. Do not begin installation before final grading is completed unless otherwise permitted by Architect.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.
- C. Stake locations of fence lines, gates, and terminal posts. Do not exceed intervals of 500 feet or line of sight between stakes. Indicate locations of utilities, lawn sprinkler system, underground structures, benchmarks, and property monuments.
- D. Install chain-link fencing to comply with ASTM F 567 and more stringent requirements indicated.
- E. Post Excavation: Drill or hand-excavate holes for posts to diameters and spacings indicated, in firm, undisturbed soil.
- F. Post Setting: Set posts in concrete as indicated.
 - 1. Verify that posts are set plumb, aligned, and at correct height and spacing, and hold in position during setting with concrete or mechanical devices.
 - 2. Concrete Fill: Place concrete around posts to dimensions indicated and vibrate or tamp for consolidation. Protect aboveground portion of posts from concrete splatter.
- G. Terminal Posts: Locate terminal end, corner, and gate posts per ASTM F 567 and terminal pull posts at changes in horizontal alignment as indicated on Drawings.
- H. Line Posts: Space line posts uniformly at 10 feet o.c.
- I. Tension Wire: Install according to ASTM F 567, maintaining plumb position and alignment of fencing. Provide horizontal tension wire at the following locations:
 - 1. Extended along top and bottom of fence fabric.
- J. Chain-Link Fabric: Apply fabric to outside inside of enclosing framework. Leave 1 inch between finish grade or surface and bottom selvage unless otherwise indicated.
- K. Install gates according to manufacturer's written instructions, level, plumb, and secure for full opening without interference. Attach fabric as for fencing. Attach hardware using tamper-resistant or concealed means. Install ground-set items in concrete for anchorage. Adjust hardware for smooth operation and lubricate where necessary.
- L. Gates: Adjust gates to operate smoothly, easily, and quietly, free of binding, warp, excessive deflection, distortion, nonalignment, misplacement, disruption, or malfunction, throughout entire operational range. Confirm that latches and locks engage accurately and securely without forcing or binding.

END OF SECTION 323113

SECTION 334100 - STORM UTILITY DRAINAGE PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Pipe and fittings.
 - 2. Channel drainage systems.
 - 3. Encasement for piping.
 - 4. Manholes.
 - 5. Cleanouts.
 - 6. Catch basins.
 - 7. Pipe outlets.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings:
 - 1. Manholes: Include plans, elevations, sections, details, frames, and covers.
 - 2. Catch basins and stormwater inlets. Include plans, elevations, sections, details, frames, covers, and grates.

1.3 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from storm drainage system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.
- B. Profile Drawings: Show system piping in elevation. Draw profiles at horizontal scale of not less than 1 inch equals 50 feet and vertical scale of not less than 1 inch equals 5 feet. Indicate manholes and piping. Show types, sizes, materials, and elevations of other utilities crossing system piping.
- C. Product Certificates: For each type of cast-iron soil pipe and fitting, from manufacturer.
- D. Field quality-control reports.

PART 2 - PRODUCTS

A. Corrugated PE Pipe and Fittings NPS 12 to NPS 60: AASHTO M 294M, Type S, with smooth waterway for coupling joints.

STORM UTILITY DRAINAGE PIPING

- 1. Silttight Couplings: PE sleeve with ASTM D 1056, Type 2, Class A, Grade 2 gasket material that mates with pipe and fittings.
- 2. Soiltight Couplings: AASHTO M 294M, corrugated, matching pipe and fittings.

2.2 PVC PIPE AND FITTINGS

- A. PVC Corrugated Sewer Piping:
 - 1. Pipe: ASTM F 949, PVC, corrugated pipe with bell-and-spigot ends for gasketed joints.
 - 2. Fittings: ASTM F 949, PVC molded or fabricated, socket type.
 - 3. Gaskets: ASTM F 477, elastomeric seals.

2.3 CLEANOUTS

- A. Cast-Iron Cleanouts:
 - 1. Description: ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.
 - 2. Top-Loading Classification(s): Heavy Duty.
 - 3. Sewer Pipe Fitting and Riser to Cleanout: ASTM A 74, Service class, cast-iron soil pipe and fittings.
- B. Plastic Cleanouts:
 - 1. Description: PVC body with PVC threaded plug. Include PVC sewer pipe fitting and riser to cleanout of same material as sewer piping.

2.4 MANHOLES

- A. Standard Precast Concrete Manholes:
 - 1. Description: ASTM C 478, precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 - 2. Diameter: 36 inches minimum unless otherwise indicated.
 - 3. Ballast: Increase thickness of precast concrete sections or add concrete to base section as required to prevent flotation.
 - 4. Base Section: 10-inch minimum thickness and 6-inch minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.
 - 5. Riser Sections: 6-inch minimum thickness, and lengths to provide depth indicated.
 - 6. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated, and top of cone of size that matches grade rings.
 - 7. Joint Sealant: ASTM C 990, bitumen or butyl rubber.
 - 8. Resilient Pipe Connectors: ASTM C 923, cast or fitted into manhole walls, for each pipe connection.
 - 9. Steps: Individual hot-dipped galvanized ladder rungs wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or

anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches.

- 10. Adjusting Rings: Interlocking HDPE rings with level or sloped edge in thickness and diameter matching manhole frame and cover, and of height required to adjust manhole frame and cover to indicated elevation and slope. Include sealant recommended by ring manufacturer.
- 11. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.
- B. Manhole Frames and Covers:
 - 1. Description: Ferrous; 36-inch ID by 7- to 9-inch riser with 4-inch- minimum width flange. Include indented top design with lettering cast into cover, using wording equivalent to "STORM SEWER."
 - 2. Material: ASTM A 536, Grade 60-40-18 ductile iron unless otherwise indicated.

2.5 CONCRETE

- A. General: Cast-in-place concrete according to ACI 318, ACI 350/350R, and the following:
 - 1. Cement: ASTM C 150, Type II.
 - 2. Fine Aggregate: ASTM C 33, sand.
 - 3. Coarse Aggregate: ASTM C 33, crushed gravel.
 - 4. Water: Potable.
- B. Portland Cement Design Mix: 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio.
 - 1. Reinforcing Fabric: ASTM A 185, steel, welded wire fabric, plain.
 - 2. Reinforcing Bars: ASTM A 615, Grade 60 deformed steel.
- C. Manhole Channels and Benches: Factory or field formed from concrete. Portland cement design mix, 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio. Include channels and benches in manholes.
 - 1. Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.
 - a. Invert Slope: **2** percent through manhole.
 - 2. Benches: Concrete, sloped to drain into channel.
 - a. Slope: 8 percent.
- D. Ballast and Pipe Supports: Portland cement design mix, 4000 psi minimum, with 0.58 maximum water/cementitious materials ratio.
 - 1. Reinforcing Fabric: ASTM A 185, steel, welded wire fabric, plain.

2. Reinforcing Bars: ASTM A 615, Grade 60 deformed steel.

2.6 CATCH BASINS

- A. Standard Precast Concrete Catch Basins:
 - 1. Description: ASTM C 478, precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 - 2. Base Section: 8-inch minimum thickness for and 8-inch minimum thickness for walls.
 - 3. Joint Sealant: ASTM C 990, bitumen or butyl rubber.
 - 4. Pipe Connectors: ASTM C 923, resilient, of size required, for each pipe connecting to base section.
- B. Frames and Grates: ASTM A 536, Grade 60-40-18, ductile iron designed for A-16, structural loading. Include flat grate with small square or short-slotted drainage openings.
 - 1. Size: 24 by 36 inches minimum unless otherwise indicated.
 - 2. Grate Free Area: Approximately 50 percent unless otherwise indicated.
- C. Frames and Grates: ASTM A 536, Grade 60-40-18, ductile iron designed for HS-20, structural traffic loading.

2.7 PIPE OUTLETS

- A. Head Walls: Cast-in-place reinforced concrete, with apron and tapered sides.
- B. Riprap Basins: Grouted and broken, irregularly sized and shaped, graded stones.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavation, trenching, and backfilling are specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

- A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
- B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.

- C. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.
- D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
- E. When installing pipe under streets or other obstructions that cannot be disturbed, use pipejacking process of microtunneling.
- F. Install gravity-flow, nonpressure drainage piping according to the following:
 - 1. Install piping pitched down in direction of flow.
 - 2. Install piping NPS 6 and larger with restrained joints at tee fittings and at changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place concrete supports or anchors.
 - 3. Install PE corrugated sewer piping according to ASTM D 2321.
 - 4. Install PVC sewer piping according to ASTM D 2321 and ASTM F 1668.

3.3 MANHOLE INSTALLATION

- A. General: Install manholes, complete with appurtenances and accessories indicated.
- B. Install precast concrete manhole sections with sealants according to ASTM C 891.
- C. Where specific manhole construction is not indicated, follow manhole manufacturer's written instructions.
- D. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches above finished surface elsewhere unless otherwise indicated.

3.4 CATCH BASIN INSTALLATION

A. Set frames and grates to elevations indicated.

3.5 STORMWATER INLET AND **OUTLET** INSTALLATION

- A. Construct inlet head walls, aprons, and sides of reinforced concrete, as indicated.
- B. Construct riprap of broken stone, as indicated.
- C. Install outlets that spill onto grade, anchored with concrete, where indicated.
- D. Install outlets that spill onto grade, with flared end sections that match pipe, where indicated.

3.6 CONCRETE PLACEMENT

A. Place cast-in-place concrete according to ACI 318.

STORM UTILITY DRAINAGE PIPING

3.7 CHANNEL DRAINAGE SYSTEM (TRENCH DRAIN) INSTALLATION

- A. Install with top surfaces of components, except piping, flush with finished surface.
- B. Assemble channel sections at least 2% slope to form slope down toward drain outlets. Use sealants, adhesives, fasteners, and other materials recommended by system manufacturer.
- C. Embed channel sections and drainage specialties in 4-inch minimum concrete around bottom and sides.
- D. Fasten grates to channel sections if indicated.
- E. Assemble channel sections with flanged or interlocking joints.
- F. Embed channel sections in 4-inch minimum concrete around bottom and sides.

3.8 IDENTIFICATION

- A. Materials and their installation are specified in Section 312000 "Earth Moving." Arrange for installation of green warning tape directly over piping and at outside edge of underground structures.
 - 1. Use detectable warning tape over nonferrous piping and over edges of underground structures.

3.9 FIELD QUALITY CONTROL

- A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.
 - 1. Submit separate reports for each system inspection.
 - 2. Defects requiring correction include the following:
 - a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 - b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 - c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 - d. Infiltration: Water leakage into piping.
 - e. Exfiltration: Water leakage from or around piping.
 - 3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
 - 4. Reinspect and repeat procedure until results are satisfactory.
- B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
 - 1. Do not enclose, cover, or put into service before inspection and approval.
 - 2. Test completed piping systems according to requirements of authorities having jurisdiction.

- 3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
- 4. Submit separate report for each test.
- 5. Gravity-Flow Storm Drainage Piping: Test according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
 - a. Exception: Piping with soiltight joints unless required by authorities having jurisdiction.
 - b. Option: Test plastic piping according to ASTM F 1417.
- C. Leaks and loss in test pressure constitute defects that must be repaired.
- D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

END OF SECTION 334100

Pre-Bid Conference Meeting IFB GHURA-24-005

Upgrade, Renovation and Correction of Above Ground Storm Drains at Toto Gardens Wednesday, March 13, 2024, 2:00 p.m.

- 1. Sign-In Sheet
- 2. Please note that this meeting is being recorded as part of the procurement record.
- 3. Introduction of Staff and potential contractors.
- 4. Reminders:
 - a. Bid Closing/ Public Opening, date is scheduled for 2:00 p.m., Tuesday, April 2, 2024. However, you may submit bid prior to closing date. Please be sure to notify the front desk to contact procurement office to receive and properly secure your bid proposal.
 - b. Deadline for questions: March 20, 2024 All inquiries must be submitted in writing via email to Antonio Camacho, Housing Procurement Administrator, at <u>accamacho@ghura.org.</u>
- 5. Bid Packet Reminder:
 - a. Ensure all GHURA and OAG forms are complete and must be notarized and sealed.
 - b. Amendments and addendums: If any will be posted on the GHURA's website, or sent out via email to registered contractors.
 - c. Note, that all contracts must be adhered to base on specifications provided. In addition, GHURA will monitor all contract phases to ensure full compliance and that all timelines are met.
 - d. Overview of Section 3 requirements
- 6. On-Site visit: Thursday, March 14, 2024 (AE will set time and location)
- 7. Adjourn